\(\int \frac {(a+a \sec (c+d x))^{3/2}}{\sqrt {\cos (c+d x)}} \, dx\) [409]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [B] (verification not implemented)
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 25, antiderivative size = 95 \[ \int \frac {(a+a \sec (c+d x))^{3/2}}{\sqrt {\cos (c+d x)}} \, dx=\frac {3 a^{3/2} \text {arcsinh}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}}{d}+\frac {a^2 \sin (c+d x)}{d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}} \]

[Out]

3*a^(3/2)*arcsinh(a^(1/2)*tan(d*x+c)/(a+a*sec(d*x+c))^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/d+a^2*sin(d*x+c
)/d/cos(d*x+c)^(3/2)/(a+a*sec(d*x+c))^(1/2)

Rubi [A] (verified)

Time = 0.24 (sec) , antiderivative size = 95, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {4349, 3899, 21, 3886, 221} \[ \int \frac {(a+a \sec (c+d x))^{3/2}}{\sqrt {\cos (c+d x)}} \, dx=\frac {3 a^{3/2} \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \text {arcsinh}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{d}+\frac {a^2 \sin (c+d x)}{d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}} \]

[In]

Int[(a + a*Sec[c + d*x])^(3/2)/Sqrt[Cos[c + d*x]],x]

[Out]

(3*a^(3/2)*ArcSinh[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]]*Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]])/d +
 (a^2*Sin[c + d*x])/(d*Cos[c + d*x]^(3/2)*Sqrt[a + a*Sec[c + d*x]])

Rule 21

Int[(u_.)*((a_) + (b_.)*(v_))^(m_.)*((c_) + (d_.)*(v_))^(n_.), x_Symbol] :> Dist[(b/d)^m, Int[u*(c + d*v)^(m +
 n), x], x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[b*c - a*d, 0] && IntegerQ[m] && ( !IntegerQ[n] || SimplerQ[c +
 d*x, a + b*x])

Rule 221

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[Rt[b, 2]*(x/Sqrt[a])]/Rt[b, 2], x] /; FreeQ[{a, b},
 x] && GtQ[a, 0] && PosQ[b]

Rule 3886

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[-2*(a/(b
*f))*Sqrt[a*(d/b)], Subst[Int[1/Sqrt[1 + x^2/a], x], x, b*(Cot[e + f*x]/Sqrt[a + b*Csc[e + f*x]])], x] /; Free
Q[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && GtQ[a*(d/b), 0]

Rule 3899

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(-b^2)
*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m - 2)*((d*Csc[e + f*x])^n/(f*(m + n - 1))), x] + Dist[b/(m + n - 1), Int[
(a + b*Csc[e + f*x])^(m - 2)*(d*Csc[e + f*x])^n*(b*(m + 2*n - 1) + a*(3*m + 2*n - 4)*Csc[e + f*x]), x], x] /;
FreeQ[{a, b, d, e, f, n}, x] && EqQ[a^2 - b^2, 0] && GtQ[m, 1] && NeQ[m + n - 1, 0] && IntegerQ[2*m]

Rule 4349

Int[(u_)*((c_.)*sin[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Dist[(c*Csc[a + b*x])^m*(c*Sin[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Csc[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSecantIntegrandQ[
u, x]

Rubi steps \begin{align*} \text {integral}& = \left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\sec (c+d x)} (a+a \sec (c+d x))^{3/2} \, dx \\ & = \frac {a^2 \sin (c+d x)}{d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}}+\left (a \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sqrt {\sec (c+d x)} \left (\frac {3 a}{2}+\frac {3}{2} a \sec (c+d x)\right )}{\sqrt {a+a \sec (c+d x)}} \, dx \\ & = \frac {a^2 \sin (c+d x)}{d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}}+\frac {1}{2} \left (3 a \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\sec (c+d x)} \sqrt {a+a \sec (c+d x)} \, dx \\ & = \frac {a^2 \sin (c+d x)}{d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}}-\frac {\left (3 a \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {1+\frac {x^2}{a}}} \, dx,x,-\frac {a \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{d} \\ & = \frac {3 a^{3/2} \text {arcsinh}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}}{d}+\frac {a^2 \sin (c+d x)}{d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.24 (sec) , antiderivative size = 92, normalized size of antiderivative = 0.97 \[ \int \frac {(a+a \sec (c+d x))^{3/2}}{\sqrt {\cos (c+d x)}} \, dx=-\frac {a^2 \left (-\sqrt {1-\sec (c+d x)}+\frac {3 \arcsin \left (\sqrt {\sec (c+d x)}\right )}{\sqrt {\sec (c+d x)}}\right ) \sin (c+d x)}{d \cos ^{\frac {3}{2}}(c+d x) \sqrt {1-\sec (c+d x)} \sqrt {a (1+\sec (c+d x))}} \]

[In]

Integrate[(a + a*Sec[c + d*x])^(3/2)/Sqrt[Cos[c + d*x]],x]

[Out]

-((a^2*(-Sqrt[1 - Sec[c + d*x]] + (3*ArcSin[Sqrt[Sec[c + d*x]]])/Sqrt[Sec[c + d*x]])*Sin[c + d*x])/(d*Cos[c +
d*x]^(3/2)*Sqrt[1 - Sec[c + d*x]]*Sqrt[a*(1 + Sec[c + d*x])]))

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(173\) vs. \(2(81)=162\).

Time = 2.21 (sec) , antiderivative size = 174, normalized size of antiderivative = 1.83

method result size
default \(\frac {a \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \left (3 \cos \left (d x +c \right ) \arctan \left (\frac {\cos \left (d x +c \right )-\sin \left (d x +c \right )+1}{2 \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right )-3 \cos \left (d x +c \right ) \arctan \left (\frac {\cos \left (d x +c \right )+\sin \left (d x +c \right )+1}{2 \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right )+2 \sin \left (d x +c \right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}\right )}{2 d \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\cos \left (d x +c \right )}}\) \(174\)

[In]

int((a+a*sec(d*x+c))^(3/2)/cos(d*x+c)^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/2/d*a*(a*(1+sec(d*x+c)))^(1/2)*(3*cos(d*x+c)*arctan(1/2*(cos(d*x+c)-sin(d*x+c)+1)/(cos(d*x+c)+1)/(-1/(cos(d*
x+c)+1))^(1/2))-3*cos(d*x+c)*arctan(1/2*(cos(d*x+c)+sin(d*x+c)+1)/(cos(d*x+c)+1)/(-1/(cos(d*x+c)+1))^(1/2))+2*
sin(d*x+c)*(-1/(cos(d*x+c)+1))^(1/2))/(cos(d*x+c)+1)/(-1/(cos(d*x+c)+1))^(1/2)/cos(d*x+c)^(1/2)

Fricas [A] (verification not implemented)

none

Time = 0.28 (sec) , antiderivative size = 337, normalized size of antiderivative = 3.55 \[ \int \frac {(a+a \sec (c+d x))^{3/2}}{\sqrt {\cos (c+d x)}} \, dx=\left [\frac {4 \, a \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) + 3 \, {\left (a \cos \left (d x + c\right )^{2} + a \cos \left (d x + c\right )\right )} \sqrt {a} \log \left (\frac {a \cos \left (d x + c\right )^{3} - 4 \, \sqrt {a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} {\left (\cos \left (d x + c\right ) - 2\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 7 \, a \cos \left (d x + c\right )^{2} + 8 \, a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2}}\right )}{4 \, {\left (d \cos \left (d x + c\right )^{2} + d \cos \left (d x + c\right )\right )}}, \frac {2 \, a \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) + 3 \, {\left (a \cos \left (d x + c\right )^{2} + a \cos \left (d x + c\right )\right )} \sqrt {-a} \arctan \left (\frac {2 \, \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{a \cos \left (d x + c\right )^{2} - a \cos \left (d x + c\right ) - 2 \, a}\right )}{2 \, {\left (d \cos \left (d x + c\right )^{2} + d \cos \left (d x + c\right )\right )}}\right ] \]

[In]

integrate((a+a*sec(d*x+c))^(3/2)/cos(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

[1/4*(4*a*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c) + 3*(a*cos(d*x + c)^2 + a*co
s(d*x + c))*sqrt(a)*log((a*cos(d*x + c)^3 - 4*sqrt(a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*(cos(d*x + c) -
2)*sqrt(cos(d*x + c))*sin(d*x + c) - 7*a*cos(d*x + c)^2 + 8*a)/(cos(d*x + c)^3 + cos(d*x + c)^2)))/(d*cos(d*x
+ c)^2 + d*cos(d*x + c)), 1/2*(2*a*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c) + 3
*(a*cos(d*x + c)^2 + a*cos(d*x + c))*sqrt(-a)*arctan(2*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(c
os(d*x + c))*sin(d*x + c)/(a*cos(d*x + c)^2 - a*cos(d*x + c) - 2*a)))/(d*cos(d*x + c)^2 + d*cos(d*x + c))]

Sympy [F]

\[ \int \frac {(a+a \sec (c+d x))^{3/2}}{\sqrt {\cos (c+d x)}} \, dx=\int \frac {\left (a \left (\sec {\left (c + d x \right )} + 1\right )\right )^{\frac {3}{2}}}{\sqrt {\cos {\left (c + d x \right )}}}\, dx \]

[In]

integrate((a+a*sec(d*x+c))**(3/2)/cos(d*x+c)**(1/2),x)

[Out]

Integral((a*(sec(c + d*x) + 1))**(3/2)/sqrt(cos(c + d*x)), x)

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1143 vs. \(2 (81) = 162\).

Time = 0.40 (sec) , antiderivative size = 1143, normalized size of antiderivative = 12.03 \[ \int \frac {(a+a \sec (c+d x))^{3/2}}{\sqrt {\cos (c+d x)}} \, dx=\text {Too large to display} \]

[In]

integrate((a+a*sec(d*x+c))^(3/2)/cos(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

1/4*(3*(a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)
*sin(1/2*d*x + 1/2*c) + 2) - a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x
 + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) + a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 -
2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(
1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2))*cos(2*d*x + 2*c)^2
+ 3*(a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*si
n(1/2*d*x + 1/2*c) + 2) - a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x +
1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) + a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*s
qrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2
*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2))*sin(2*d*x + 2*c)^2 + 4
*sqrt(2)*a*sin(3/2*d*x + 3/2*c) - 4*sqrt(2)*a*sin(1/2*d*x + 1/2*c) + 2*(2*sqrt(2)*a*sin(3/2*d*x + 3/2*c) - 2*s
qrt(2)*a*sin(1/2*d*x + 1/2*c) + 3*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/
2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - 3*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*
c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) + 3*a*log(2*cos(1/2*d*x + 1/2*c)^2
 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - 3*a*log(2
*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x +
1/2*c) + 2))*cos(2*d*x + 2*c) + 3*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/
2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - 3*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*
c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) + 3*a*log(2*cos(1/2*d*x + 1/2*c)^2
 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - 3*a*log(2
*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x +
1/2*c) + 2) - 4*(sqrt(2)*a*cos(3/2*d*x + 3/2*c) - sqrt(2)*a*cos(1/2*d*x + 1/2*c))*sin(2*d*x + 2*c))*sqrt(a)/((
cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)*d)

Giac [F]

\[ \int \frac {(a+a \sec (c+d x))^{3/2}}{\sqrt {\cos (c+d x)}} \, dx=\int { \frac {{\left (a \sec \left (d x + c\right ) + a\right )}^{\frac {3}{2}}}{\sqrt {\cos \left (d x + c\right )}} \,d x } \]

[In]

integrate((a+a*sec(d*x+c))^(3/2)/cos(d*x+c)^(1/2),x, algorithm="giac")

[Out]

sage0*x

Mupad [F(-1)]

Timed out. \[ \int \frac {(a+a \sec (c+d x))^{3/2}}{\sqrt {\cos (c+d x)}} \, dx=\int \frac {{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{3/2}}{\sqrt {\cos \left (c+d\,x\right )}} \,d x \]

[In]

int((a + a/cos(c + d*x))^(3/2)/cos(c + d*x)^(1/2),x)

[Out]

int((a + a/cos(c + d*x))^(3/2)/cos(c + d*x)^(1/2), x)